MicroRNA network changes in the brain stem underlie the development of hypertension.
نویسندگان
چکیده
Hypertension is a major chronic disease whose molecular mechanisms remain poorly understood. We compared neuroanatomical patterns of microRNAs in the brain stem of the spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY, control). We quantified 419 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral medulla (RVLM), from SHR and WKY rats, during three main stages of hypertension development. Changes in microRNA expression were stage- and region-dependent, with a majority of SHR vs. WKY differential expression occurring at the hypertension onset stage in NTS versus at the prehypertension stage in RVLM. Our analysis identified 24 microRNAs showing time-dependent differential expression in SHR compared with WKY in at least one brain region. We predicted potential gene regulatory targets corresponding to catecholaminergic processes, neuroinflammation, and neuromodulation using the miRWALK and RNA22 databases, and we tested those bioinformatics predictions using high-throughput quantitative PCR to evaluate correlations of differential expression between the microRNAs and their predicted gene targets. We found a novel regulatory network motif consisting of microRNAs likely downregulating a negative regulator of prohypertensive processes such as angiotensin II signaling and leukotriene-based inflammation. Our results provide new evidence on the dynamics of microRNA expression in the development of hypertension and predictions of microRNA-mediated regulatory networks playing a region-dependent role in potentially altering brain-stem cardiovascular control circuit function leading to the development of hypertension.
منابع مشابه
Title : microRNA Network Changes in the Brainstem Underlie the Development of Hypertension
Hypertension is a major chronic disease whose molecular mechanisms remain poorly 32 understood. We compared neuroanatomical patterns of microRNAs in the brainstem of the 33 spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY; control). We quantified 419 34 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral 35 medulla (RVLM), from SHR and WK...
متن کاملP27: Brain Network as a Pivotal Part in Intelligence Function
Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...
متن کاملDetection of Glycoconjugate Changes in the Embryonic Trigeminal Nucleus in Balb/C Mouse by Lectin Histochemistry
Purpose: Determination of changes of glycoconjugates, which have special terminal sugars, in embryonic developmental processes of brain stem and trigeminal nucleus in Balb/C mouse. Materials and Methods: In this study mice embryos between 10-17 embryonic days were used. They were fixed according to ordinary laboratory procedures. The specimens were embedded in paraffin and serial sections with...
متن کاملThe miR-223: An Inflammatory MicroRNA Involved in Pathogenesis of Multiple Sclerosis
Multiple sclerosis (MS) is the most common autoimmune inflammatory demyelinating disease that affects the brain and spinal cord. Dysregulation or mutation of miRNA genes have been linked to the pathogenesis of MS. The miRNAs are short, 20-22 nucleotide long, single-stranded regulatory and non-protein coding RNAs that modulate the expression of multiple target genes. Among miRNAs, miR-223 has be...
متن کاملDerived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages
The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 47 9 شماره
صفحات -
تاریخ انتشار 2015